Reactions of Organoruthenium Phosphine Complexes with Hydroborating Reagents

R. Thomas Baker, ${ }^{*, \dagger}$ Joseph C. Calabrese, ${ }^{\dagger}$ Stephen A. Westcott, ${ }^{\ddagger}$ and Todd B. Marder** ${ }^{\boldsymbol{\ddagger}}$
Contribution No. 7110 from Central Research and Development, Corporate Catalysis Center, DuPont Science and Engineering Labs, Experimental Station, Wilmington, Delaware 19880-0328, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received April 5, 1995^{\star}

Abstract

In contrast to previous work on addition of $\mathrm{E}-\mathrm{H}$ bonds $\left(\mathrm{E}=\mathrm{SiR}_{3}, \mathrm{NR}_{2}, \mathrm{OR}, \mathrm{SR}\right)$ to organoruthenium phosphine complexes, reactions of the latter with organoboranes, BRR'H, are dominated by B-C bond formation. Treatment of $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)$ with thexylborane $\left[\left\{\mathrm{BH}\left(\mathrm{CMe}_{2} \mathrm{CHMe}_{2}\right)(\mu-\mathrm{H})\right\}_{2}\right]$ and 9 - H - $\mathrm{BBN}[9$-borabicyclo[3.3.1]nonane, $\left\{\mathrm{B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu \text { - } \mathrm{H})_{2}\right]$, gives ruthenaheterocycles $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{1}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{BRR}^{\prime}(\mu-\mathrm{H})\right](3 \mathrm{a}, \mathrm{b})$ via insertion of $\mathrm{B}-\mathrm{H}$ into the $\mathrm{Ru}-\mathrm{C}$ bond. Analogous Os complexes ($\mathbf{3 c}, \mathrm{d}$) were prepared similarly. Activation energies for exchange of $\mathrm{M}-\mathrm{H}$ and $\mathrm{M}-\mathrm{H}-\mathrm{B}$ moieties in $\mathbf{3 a - c}$ were estimated from ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ DNMR spectra. Benzyne complex $\mathrm{Ru}_{(}\left(\mathrm{PMe}_{3}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and thexylborane yield $\mathrm{Me}_{3} \mathrm{P} \cdot \mathrm{BH}_{2}($ thexyl $)$ and $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{2}-\mathrm{CH}_{2} \mathrm{CHMeCMe}_{2} \mathrm{BPh}-\right.$ $\left.(\mu-\mathrm{H})_{2}\right](\mathbf{5})$ via $\mathrm{B}-\mathrm{C}$ bond formation and $\mathrm{C}-\mathrm{H}$ bond activation of the thexyl side chain. Reaction of $\mathrm{Ru}_{\left(\mathrm{PMe}_{3}\right)_{4}-}$ $\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ with 9 - H -BBN affords $\mathrm{Me}_{3} \mathrm{P} \cdot \mathrm{BH}\left(\mathrm{C}_{8} \mathrm{H}_{44}\right)$ and vinylborane complex $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{2}, \eta^{2}-\mathrm{CH}_{2}=\mathrm{CHB}\left(\mathrm{C}_{8} \mathrm{H}_{44}\right)(\mu\right.$ H)] (7) which exists as a mixture of fac- and mer-isomers in solution. A competing pathway gives $c i s$ - $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ and 9 -vinyl-BBN. These reactions provide an alternative mechanistic pathway for the metal-mediated dehydrogenative borylation of alkenes reported previously. Molecular structures of $\mathbf{3 b}, \mathbf{d}, \mathbf{5}$, and fac-7 were determined by X-ray diffraction.

Introduction

The discovery ${ }^{1}$ and subsequent applications ${ }^{2}$ of transition metal-catalyzed hydroboration of alkenes using catecholborane (HBcat, $\mathrm{HBO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) have rekindled interest in the interactions of organoboranes with transition metal centers. ${ }^{3}$ While a number of examples of oxidative addition of HBcat to low valent transition metals have been reported, ${ }^{4}$ for organoboranes,

[^0]BRR'H, the only examples involve "supernucleophiles" such as $\mathrm{IrH}\left(\mathrm{PMe}_{3}\right)_{4} \cdot{ }^{5}$ A more common outcome of organoborane reactions involves formation of a bond between boron and the X atom of the $\mathrm{M}-\mathrm{X}$ bond, where $\mathrm{X}=\mathrm{H}, \mathrm{Cl}$, hydrocarbyl, as shown recently for phosphinorhodium complexes. ${ }^{6}$

The formation of vinylboronate esters in some catalyzed additions of HB cat to alkenes has elicited comparisons to similar silane-based catalysis. ${ }^{2 k .7}$ Indeed, we recently reported the first confirmed examples of alkene insertion into $\mathrm{Rh}-\mathrm{B}$ bonds and of $\mathrm{B}-\mathrm{B}$ bond reductive elimination. ${ }^{8}$ The first reports of the oxidative addition of $\mathrm{B}-\mathrm{B}$ bonds to low valent transition metal phosphine complexes ${ }^{9,10,35}$ were accompanied by the discovery of catalyzed diboration of alkynes ${ }^{9}$ and alkenes. ${ }^{11}$ Although reactions of metal boryl ($\mathrm{M}-\mathrm{BR}_{2}$) complexes continue to contribute to our understanding of metal-catalyzed transformations of boranes, ${ }^{3.8}$ interactions of metal hydrides and hydrocarbyls with a variety of borane reagents should provide complementary information. We report herein several reactions of alkylboranes $\left(\mathrm{BRH}_{2}\right.$ and $\left.\mathrm{BR}^{\prime}{ }_{2} \mathrm{H}\right)$ with organoruthenium phosphine complexes in which $\mathrm{B}-\mathrm{C}$ bond formation predominates. Formation of vinylborane from Ru-coordinated ethylene provides an alternative mechanistic pathway for the late metalmediated dehydrogenative borylation of alkenes, ${ }^{12}$

[^1]
Experimental Section

Synthesis. General details are as described previously. ${ }^{2 c}$ NMR spectra (Tables 4 and 5) were obtained using a GE Charm narrowbore spectrometer ($301 \mathrm{MHz}{ }^{1} \mathrm{H}, 121 \mathrm{MHz}{ }^{31} \mathrm{P}, 75.4 \mathrm{MHz}{ }^{13} \mathrm{C}$ and $\left.96.4 \mathrm{MHz}{ }^{11} \mathrm{~B}\right)$. Chemical shifts are positive downfield from external $\mathrm{SiMe}_{4}\left({ }^{(} \mathrm{H},{ }^{13} \mathrm{C}\right), 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$, and $\mathrm{BF}_{3}{ }^{-} \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B}\right)$. Elemental analyses were performed by Mikroanalytisches Labor Pascher, Remagen, Germany. Thexylborane ${ }^{13}$ and transition metal complexes trans$\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}{ }^{14}$ cis $-\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4},{ }^{15} \mathrm{MH}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)(\mathrm{M}=$ $\left.\mathrm{Ru},{ }^{16} \mathrm{Os}^{17}\right), \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right),{ }^{18}$ and $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)^{19}$ were prepared as described previously, and 9-H-BBN (Aldrich) was recrystallized from hexanes before use.

Preparation of $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathbf{B H}(\right.$ thexyl) $(\boldsymbol{\mu}-\mathrm{H})]$ (3a). A solution of $43 \mathrm{mg}(0.22 \mathrm{mmol})$ of thexylborane dimer in 2 mL of hexane was added to a solution of $170 \mathrm{mg}(0.42 \mathrm{mmol})$ of RuH-$\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)(2 \mathrm{a})$ in 2 mL of hexane. After 20 h the solution was concentrated to 2 mL and cooled at $-20^{\circ} \mathrm{C}$ for 20 h to give colorless crystals of 3 a . The product was washed with 1 mL of cold $\left(-20^{\circ} \mathrm{C}\right)$ pentane and dried in vacuo to afford 174 mg of $3 \mathrm{a}(82 \%)$: IR 2337 (B-H), $1822 \mathrm{~cm}^{-1}$ (Ru-H) ${ }^{11}$ B NMR -11.9 ppm (br). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{51} \mathrm{BP}_{4} \mathrm{Ru}: \mathrm{C}, 42.95 ; \mathrm{H}, 10.21$; B, 2.15; P, 24.61; Ru, 20.08. Found: C, $42.60 ; \mathrm{H}, 10.24 ; \mathrm{B}, 2.14 ; \mathrm{P}, 24.2 ; \mathrm{Ru}, 19.1$.

The Os analogue 3 c was generated in toluene- d_{8} solution from 2 equiv of $\mathrm{OsH}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)$ (2b) and 1.1 equiv of thexylborane dimer. The resulting solution was characterized by multinuclear NMR spectroscopy (Tables 4 and 5): "B NMR -9.3 ppm (br).

The $9-\mathrm{BBN}$ analogues, $\mathbf{3 b}$,d were prepared similarly from 30 mg (0.12 mmol) of $9-\mathrm{H}-\mathrm{BBN}$ dimer and 0.21 mmol of the metal complex (85 mg of $\mathbf{2 a}$ or 104 mg of $\mathbf{2 b}$) in 2 mL of hexane to give 90 mg of $\mathbf{3 b}$ (81%) and 95 mg of 3d (73%). For 3b: IR $1856 \mathrm{~cm}^{-1}(\mathrm{Ru}-\mathrm{H})$; ${ }^{11}$ B NMR 0.4 ppm (br). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{51} \mathrm{BP}_{4} \mathrm{Ru}: \mathrm{C}, 45.55 ; \mathrm{H}, 9.75$; B, 2.05; P, 23.49; Ru, 19.16. Found: C, 45.18; H, 9.76; B, 2.03; P, 23.2; Ru, 18.0. For 3d: IR $1932 \mathrm{~cm}^{-1}(\mathrm{Os}-\mathrm{H})$; ${ }^{11}$ B NMR 5.7 ppm (br). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{51} \mathrm{BOsP}_{4}$: C, 38.96; $\mathrm{H}, 8.34 ; \mathrm{B}, 1.75$; Os, 30.85; P, 20.1. Found: C, 38.55; H, 8.33; B, 1.70; Os, 30.4; P, 19.7.

Preparation of $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left[\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{\mathbf{2}}-\mathrm{CH}_{\mathbf{2}} \mathrm{CHMeCMe}_{2} \mathrm{BPh}(\boldsymbol{\mu}-\mathrm{H})_{\mathbf{2}}\right](\mathbf{5})$. A solution of 60 mg (0.31 mmol) of thexylborane dimer in 2 mL of hexane was added to a solution of $144 \mathrm{mg}(0.30 \mathrm{mmol})$ of $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4^{-}}$ $\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)(4)$ in 5 mL of toluene. After 20 h , the solvent was removed in vacuo, and the residue was dissolved in hexane. After cooling the orange solution at $-20^{\circ} \mathrm{C}$ for 2 days, the resulting yellow crystals were collected by filtration, washed with 2 mL of cold $\left(-80^{\circ} \mathrm{C}\right)$ pentane, and dried in vacuo to yield 112 mg of $5(74 \%)$: ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR - $12.4 \mathrm{ppm}(\mathrm{br}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- d_{8}) 150.7 (v br, ipso of Ph), 133.2 (br, 2C, ortho of Ph), 126.6 (2C, meta of Ph), 125.0 (para of Ph), 53.5 (CHMe), $37.9\left(\mathrm{Br} . \mathrm{CMe}_{2}\right.$), 34.0 (d tr, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}=59,9 \mathrm{~Hz}$, CH_{2}), $28.0(\mathrm{~s}, \mathrm{CH} M e), 24.4\left(\mathrm{~d}, 3 \mathrm{C}, J_{\mathrm{CP}}=20 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 23.2(\mathrm{~d}, 3 \mathrm{C}$, $\left.J_{\mathrm{CP}}=28 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 22.6\left(\mathrm{~d}, 3 \mathrm{C}, J_{\mathrm{CP}}=28 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 20.8,17.3(\mathrm{~s}$, CMe $)$. Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{BP}_{3} \mathrm{Ru}: \mathrm{C}, 50.11 ; \mathrm{H}, 9.21 ; \mathrm{B}, 2.15 ; \mathrm{P}$, 18.46; Ru, 20.08. Found: C, 50.33; H, 9.33; B, 2.32; P, 17.8; Ru, 18.9.

Preparation of $\operatorname{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\boldsymbol{\eta}^{2}, \boldsymbol{\eta}^{1}-\mathrm{CH}_{2}=\mathbf{C H B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu-\mathrm{H})\right](7)$. A solution of $170 \mathrm{mg}(0.7 \mathrm{mmol})$ of $9-\mathrm{H}-\mathrm{BBN}$ dimer in 5 mL of toluene was added slowly to a solution of $305 \mathrm{mg}(0.7 \mathrm{mmol})$ of $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{+-}$ $\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(6)$ in 10 mL of hexane cooled to $-80^{\circ} \mathrm{C}$. After warming to $25^{\circ} \mathrm{C}$ and stirring for 18 h , the solvent was removed in vacuo, and

[^2]the residue was triturated with cold $\left(-20^{\circ} \mathrm{C}\right)$ hexane and filtered to remove $\mathrm{Me}_{3} \mathrm{P} \cdot \mathrm{BH}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)$. The filtrate was cooled at $-20^{\circ} \mathrm{C}$ for 18 h , and the resulting pale yellow crystals were collected by filtration, washed with 2 mL of cold $\left(-80^{\circ} \mathrm{C}\right)$ pentane, and dried in vacuo to give 165 mg of $7(49 \%)$. Complex 7 was recrystallized from toluene/ hexane $1: 2$ at $-20^{\circ} \mathrm{C}$: spectroscopic data for fac-7 IR (Nujol) 1899 cm^{-1} (Ru-H); ${ }^{11} \mathrm{~B}$ NMR -5.0 ppm (br); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 79.6 (br, $\left.\mathrm{BCH}=\mathrm{CH}_{2}\right), 52.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=12 \mathrm{~Hz}, \mathrm{BCH}=\mathrm{CH}_{2}\right)$. For mer-7 IR (hexane) $1910 \mathrm{~cm}^{-1}(\mathrm{Ru}-\mathrm{H})$; ${ }^{11}$ B NMR -5.0 ppm (br); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{THF}-d_{8}\right) 81.2\left(\mathrm{br}, \mathrm{BCH}=\mathrm{CH}_{2}\right), 59.5\left(\mathrm{~s}, \mathrm{BCH}=\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{46} \mathrm{BP}_{3} \mathrm{Ru}: \mathrm{C}, 47.61 ; \mathrm{H}, 9.67$; $\mathrm{B}, 2.26 ; \mathrm{P}, 19.38 ; \mathrm{Ru}, 21.08$. Found: C, 47.47; H, 9.77; B, 2.18; P, 19.0; Ru, 19.7.

Molecular Structure Determination. Crystals suitable for X-ray diffraction were obtained as described above. A summary of the crystallographic results is presented in Table 1. All data sets were collected at low temperature on Enraf-Nonius CAD4 or Syntex R3 diffractometers using graphite-filtered Mo radiation. Data were reduced in the usual fashion for Lorentz-polarization, and azimuthal absorption corrections were applied for $\mathbf{3 b}, \mathbf{d}$ and 5 (range of transmission factors $=0.81-0.86,0.25-0.33$, and $0.76-0.79$, respectively). Structure solution and refinement were performed on a VAX/IBM cluster system using a local program set. The structure of $\mathbf{3 b}$ was solved by direct methods (SHELX), ${ }^{20}$ while for 3d, 5, and $\mathbf{7}$ heavy atom positions were obtained via automated Patterson analysis and used to phase reflections for the remaining light atoms via the usual combination of structure factor, Fourier synthesis, and full-matrix least-squares refinement. All refinements were performed using full-matrix least squares on F, with anisotropic thermal parameters for all non-hydrogen atoms, and included anomalous dispersion terms ${ }^{21}$ for Ru , Os , and P as well as idealized hydrogen coordinates as fixed atom contributors. The data were of sufficient quality that all hydrogens were refined successfully with the exception of the C5 and C6 methyl hydrogens in 5 ; thus only the $\mathrm{Ru}-$ $\mathrm{H}-\mathrm{B}$ hydrogens were varied in the final model of 5 , and the largest residual electron density was $1.63 \mathrm{e} / \AA^{3}$, near C 3 . The atomic scattering factors were taken from the tabulations of Cromer and Waber. ${ }^{22}$ For 5 and 7 the asymmetric unit consists of one molecule in a general position. Selected bond distances and angles for $\mathbf{3 b}, \mathbf{d}, \mathbf{5}$, and 7 are given in Tables 2, 3, 7, and 8. Tables of final positional and thermal parameters for non-hydrogen atoms, general temperature factors, and hydrogen atom positions are available as supporting information.

Results

In contrast to the d^{8} hydridorhodium and -iridium phosphine complexes reported previously, ${ }^{5.6}$ the d^{6} dihydride complexes cis $-\mathrm{MH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}(1, \mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ do not react readily with thexylborane $\left[\left\{\mathrm{BH}\left(\mathrm{CMe}_{2} \mathrm{CHMe}_{2}\right)(\mu \text { - } \mathrm{H})\right\}_{2}\right]$ and $9-\mathrm{H}-\mathrm{BBN}$ (9borabicyclo[3.3,1]nonane, $\left[\mathrm{B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu-\mathrm{H})\right]_{2}$) at ambient temperature. Reactions of monohydride $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)$ (2a) with these boranes, however, gave colorless crystals of the new ruthenaheterocycles $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{1}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{BRR}^{\prime}(\mu\right.$ H)] (3a,b). Complexes 3a,b were characterized by elemental

analysis, IR, and multinuclear NMR spectroscopy, and the molecular structure of $\mathbf{3 b}$ was determined by single crystal X-ray diffraction. The analogous osmium complexes $3 \mathrm{c}, \mathrm{d}$ were

[^3]Table 1. Summary of X-ray Diffraction Data

complex	$\begin{aligned} & \mathrm{RuH}_{\left(\mathrm{PMe}_{8}\right)_{3}}^{3}\left[\mathrm{PMe}_{24} \mathrm{CH}_{2} \mathrm{BH}-\right. \\ & \left.\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)\right] \end{aligned}$	$\begin{aligned} & \mathrm{OsH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{BH}-\right. \\ & \left.\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)\right](\mathbf{3 d}) \end{aligned}$	$\begin{gathered} {\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left[\mathrm{CH}_{2} \mathrm{CHMe}-\right.}_{\left.\mathrm{CMe}_{2} \mathrm{BH}_{2} \mathrm{Ph}\right](5)} . \end{gathered}$	$\begin{aligned} & \mathrm{RuH}_{\left(\mathrm{PMe}_{3}\right)_{3}}\left[\mathrm{CH}_{2}=\mathrm{CHBH}-\right. \\ & \left.\left(\mathrm{C}_{84}\right)\right](7) \end{aligned}$
formula	$\mathrm{C}_{20} \mathrm{H}_{51} \mathrm{BP}_{4} \mathrm{Ru}$	$\mathrm{C}_{20} \mathrm{H}_{51} \mathrm{BOsP}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{BP}_{3} \mathrm{Ru}$	$\mathrm{C}_{19} \mathrm{H}_{46} \mathrm{BP}_{3} \mathrm{Ru}$
fw	527.43	616.53	503.43	479.41
$a, ~ \AA{ }^{\text {a }}$	15.328(2)	15.300 (3)	10.059(2)	14.669(3)
b. \AA	9.841(2)	9.798(2)	10.378(2)	17.951(4)
c, \AA	19.542(4)	19.534(3)	14.998(3)	18.667(2)
α, deg	90	90	74.71(2)	90
β, deg	112.75(1)	112.83(1)	82.22(2)	90
γ, deg	90	90	61.52(2)	90
$v,{ }^{\text {a }}{ }^{3}$	2718.4	2698.9	1327.4	4915.5
Z	4	4	2	8
$\varrho_{\text {calcd }} \mathrm{g} \mathrm{cm}^{-3}$	1.288	1.517	1.259	1.295
space group	$P 2{ }_{1} / \mathrm{c}$ ($\mathrm{no.14)}$	$P 2{ }_{1} / \mathrm{C}$ ($\mathrm{no}, 14$)	$P 1$ (no. 2)	Pbca (no.61)
cryst dimens, mm	$0.30 \times 0.14 \times 0.36$	$0.28 \times 0.20 \times 0.30$	$0.37 \times 0.32 \times 0.46$	$0.35 \times 0.23 \times 0.50$
temp, ${ }^{\circ} \mathrm{C}$	-100	-100	-70	-70
radiation	Mo K α	Mo K α	Mo K α	Mo K ${ }^{\text {a }}$
μ, cm^{-1}	8.02	49.69	7.61	8.19
data collection method	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$
max 2θ, deg	55.0	55.0	55.0	55.0
scan speed, deg/min	3.90-11.70	3.90-11.70	1.70-5.00	1.70-5.00
scan width, deg	1.00ω	1.20ω	1.20-1.90 ω	1.20-1.90 ω
total no. of observns	6798	6807	6294	6206
no. of unique data, I > $3 \sigma(\mathrm{I})$	4725	5033	4986	3750
final no. of variables	439	439	243	401
final max. shift/error	0.03	0.15	0.04	0.05
max. residual density, $\mathrm{e}^{-/} / \AA^{3}$	0.47	0.52	1.63	0.35
$R^{\text {c }}$	0.027	0.021	0.031	0.028
$R_{\text {w }}{ }^{\text {b }}$	0.034	0.021	0.034	0.025

${ }^{c} \Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{\mathrm{o}}\right| \cdot{ }^{b}\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right]^{1 / 2}$.

Table 2. Selected Bond Distances (\AA) and Angles (deg) for $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{1}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{~B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu\right.$-H) $]$ (3b)

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3217(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$97.03(3)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3541(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(3)$	$159.53(4)$
$\mathrm{Ru}(1)-\mathrm{P}(3)$	$2.3331(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(4)$	$97.76(3)$
$\mathrm{Ru}(1)-\mathrm{P}(4)$	$2.2576(9)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(3)$	$99.00(3)$
$\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~B})$	$1.941(21)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(4)$	$96.80(3)$
$\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{RU})$	$1.568(37)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{P}(4)$	$92.91(3)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.807(3)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~B})$	$80.9(6)$
$\mathrm{P}(1)-\mathrm{C}(12)$	$1.826(4)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{RU})$	$77(1)$
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.827(4)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~B})$	$87.7(6)$
$\mathrm{P}(2)-\mathrm{C}(21)$	$1.828(4)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{RU})$	$173(1)$
$\mathrm{P}(2)-\mathrm{C}(22)$	$1.834(4)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~B})$	$87.1(6)$
$\mathrm{P}(2)-\mathrm{C}(23)$	$1.829(4)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{RU})$	$86(1)$
$\mathrm{P}(3)-\mathrm{C}(31)$	$1.827(4)$	$\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~B})$	$175.5(6)$
$\mathrm{P}(3)-\mathrm{C}(32)$	$1.843(3)$	$\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{RU})$	$87(1)$
$\mathrm{P}(3)-\mathrm{C}(33)$	$1.835(4)$	$\mathrm{H}(1 \mathrm{~B})-\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{RU})$	$88(1)$
$\mathrm{P}(4)-\mathrm{C}(41)$	$1.829(4)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$102.7(1)$
$\mathrm{P}(4)-\mathrm{C}(42)$	$1.828(4)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$116.7(1)$
$\mathrm{P}(4)-\mathrm{C}(43)$	$1.820(4)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$127.3(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.545(4)$	$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(21)$	$116.2(1)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.522(5)$	$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(22)$	$119.8(1)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.527(5)$	$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(23)$	$19.9(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.539(5)$	$\mathrm{Ru}(1)-\mathrm{P}(3)-\mathrm{C}(31)$	$117.6(1)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.548(4)$	$\mathrm{Ru}(1)-\mathrm{P}(3)-\mathrm{C}(32)$	$123.6(1)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.533(5)$	$\mathrm{Ru}(1)-\mathrm{P}(3)-\mathrm{C}(33)$	$115.1(1)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.542(5)$	$\mathrm{Ru}(1)-\mathrm{P}(4)-\mathrm{C}(41)$	$119.1(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.533(6)$	$\mathrm{Ru}(1)-\mathrm{P}(4)-\mathrm{C}(42)$	$120.6(1)$
$\mathrm{C}(1)-\mathrm{B}(1)$	$1.620(5)$	$\mathrm{Ru}(1)-\mathrm{P}(4)-\mathrm{C}(43)$	$116.4(1)$
$\mathrm{C}(5)-\mathrm{B}(1)$	$1.615(5)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	$104.4(2)$
$\mathrm{C}(11)-\mathrm{B}(1)$	$1.639(5)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$	$103.8(2)$
$\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$1.367(21)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{B}(1)$	$107.0(2)$
$\mathrm{Ru}(1)-\mathrm{B}(1)$	$2.994(1)$	$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(5)$	$105.7(3)$
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(11)$	$113.8(3)$
		$\mathrm{C}(5)-\mathrm{B}(1)-\mathrm{C}(11)$	$116.7(3)$
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$101(1)$
		$\mathrm{C}(5)-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$111(1)$
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$1107(1)$
		$\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~B})-\mathrm{B}(1)$	$129(1)$

prepared similarly and characterized spectroscopically (3d by X-ray diffraction).

The molecular structure of $\mathbf{3 b}$ (Figure 1) consists of a pseudooctahedral ruthenium center with meridional PMe_{3}

Table 3. Selected Bond Distances (\AA) and Angles (deg) for $\mathrm{OsH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{\prime}, \eta^{\prime}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{~B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu\right.$ - H$\left.)\right]$ (3d)

$\mathrm{Os}(1)-\mathrm{P}(1)$	$2.3287(8)$	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	$96.76(3)$
$\mathrm{Os}(1)-\mathrm{P}(2)$	$2.3375(8)$	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(3)$	$159.77(3)$
$\mathrm{Os}(1)-\mathrm{P}(3)$	$2.3298(8)$	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(4)$	$97.82(3)$
$\mathrm{Os}(1)-\mathrm{P}(4)$	$2.2657(8)$	$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{P}(3)$	$98.85(3)$
$\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{~B})$	$1.841(33)$	$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{P}(4)$	$96.51(3)$
$\mathrm{Os}(1)-\mathrm{H}(10 \mathrm{~S})$	$1.617(34)$	$\mathrm{P}(3)-\mathrm{Os}(1)-\mathrm{P}(4)$	$93.11(3)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.803(3)$	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{~B})$	$80(1)$
$\mathrm{P}(1)-\mathrm{C}(12)$	$1.826(3)$	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{OS})$	$79(1)$
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.830(4)$	$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{~B})$	$88(1)$
$\mathrm{P}(2)-\mathrm{C}(21)$	$1.825(4)$	$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{OS})$	$175(1)$
$\mathrm{P}(2)-\mathrm{C}(22)$	$1.833(4)$	$\mathrm{P}(3)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{~B})$	$88(1)$
$\mathrm{P}(2)-\mathrm{C}(23)$	$1.826(4)$	$\mathrm{P}(3)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{OS})$	$85(1)$
$\mathrm{P}(3)-\mathrm{C}(31)$	$1.828(3)$	$\mathrm{P}(4)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{~B})$	$175(1)$
$\mathrm{P}(3)-\mathrm{C}(32)$	$1.847(4)$	$\mathrm{P}(4)-\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{OS})$	$86(1)$
$\mathrm{P}(3)-\mathrm{C}(33)$	$1.833(3)$	$\mathrm{H}(1 \mathrm{~B})-\mathrm{Os}(1)-\mathrm{H}(10 \mathrm{O})$	$89(2)$
$\mathrm{P}(4)-\mathrm{C}(41)$	$1.824(4)$	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$103.5(1)$
$\mathrm{P}(4)-\mathrm{C}(42)$	$1.830(4)$	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$116.3(1)$
$\mathrm{P}(4)-\mathrm{C}(43)$	$1.827(4)$	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$126.6(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.543(4)$	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(21)$	$116.7(1)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.535(5)$	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(22)$	$119.8(1)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.525(5)$	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(23)$	$119.8(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.536(5)$	$\mathrm{Os}(1)-\mathrm{P}(3)-\mathrm{C}(31)$	$11.0(1)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.549(5)$	$\mathrm{Os}(1)-\mathrm{P}(3)-\mathrm{C}(32)$	$123.1(1)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.536(5)$	$\mathrm{Os}(1)-\mathrm{P}(3)-\mathrm{C}(33)$	$114.8(1)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.530(5)$	$\mathrm{Os}(1)-\mathrm{P}(4)-\mathrm{C}(41)$	$119.2(1)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.524(5)$	$\mathrm{Os}(1)-\mathrm{P}(4)-\mathrm{C}(42)$	$121.0(1)$
$\mathrm{C}(1)-\mathrm{B}(1)$	$1.612(4)$	$\mathrm{Os}(1)-\mathrm{P}(4)-\mathrm{C}(43)$	$115.9(1)$
$\mathrm{C}(5)-\mathrm{B}(1)$	$1.605(4)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	$105.0(2)$
$\mathrm{C}(11)-\mathrm{B}(1)$	$1.636(4)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$	$103.8(2)$
$\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$1.428(33)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{B}(1)$	$106.6(2)$
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(5)$	$106.6(2)$
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(11)$	$114.0(3)$
		$\mathrm{C}(5)-\mathrm{B}(1)-\mathrm{C}(11)$	$117.1(3)$
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$104(1)$
		$\mathrm{C}(5)-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$110(1)$
		$\mathrm{C}(111-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$	$105(1)$
		$\mathrm{Os}(1)-\mathrm{H}(1 \mathrm{~B})-\mathrm{B}(1)$	$133(2)$

ligands and cis hydride and $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ moieties. Formal insertion of the $\mathrm{B}-\mathrm{H}$ bond of the organoborane into the $\mathrm{Ru}-\mathrm{C}$ bond of the metalated phosphine thus affords a novel $\mathrm{Ru}-\mathrm{H}-$ $\mathrm{B}-\mathrm{C}-\mathrm{P}$ metallaheterocycle which is nearly planar. Crystals

Table 4. ${ }^{1} \mathrm{H}$ NMR Spectra ${ }^{\text {" }}$

compd	M-H	M-H-B	PMe_{3}	other
3a	-8.5 (br d, 80)	-12.0 (br s)	$\begin{gathered} 1.44(\mathrm{~d} \mathrm{~d}, 7,1.5,9 \mathrm{H}), \\ 1.37(\mathrm{br}, 18 \mathrm{H}) \end{gathered}$	$\begin{aligned} & \left.1.37 \text { (br ov, PMe } e_{2}\right), 1.15\left(\mathrm{br} \mathrm{~s}, \mathrm{PCH} H_{2}\right), 0.76(\mathrm{~d}, 7, \mathrm{CHMe}), \\ & 0.68\left(\mathrm{~s}, \mathrm{CM} e_{2}\right) \end{aligned}$
at $-90^{\circ} \mathrm{C}^{\text {b }}$	-8.4 (d q, 84, 26)	-12.0 (br d, 26)	$\begin{aligned} & 1.42(\mathrm{~d}, 7), 1.39(\mathrm{~d}, 6) \\ & 1.29(\mathrm{~d}, 8) \end{aligned}$	1.12 (br s, $\mathrm{PCH} \mathrm{H}_{2}$), 0.94 (mult, PCH_{2}), 0.73 (d, 11, 3H, CHMe e_{2}), 0.71 (d, 12, 3H, CHMe), $0.68,0.63$ (s, CMe_{2}), PMe_{2} doublets obscured
3b	-9.85		$\begin{aligned} & 1.46(\mathrm{~d} \mathrm{~d}, 7,2,9 \mathrm{H}) \\ & 1.35(\mathrm{~d}, 6.5,18 \mathrm{H}) \end{aligned}$	1.43 (dd, 8, 2, PMe ${ }_{2}$), 0.76 (br s, PCH_{2})
at $-80^{\circ} \mathrm{C}^{\text {b }}$	-7.80 (d q, 84, 25)	-11.56 (br d, 37)	$\begin{aligned} & 1.35(\mathrm{~d}, 6.5), 1.31(\mathrm{~d}, 6) \\ & 1.20(\mathrm{~d}, 7) \end{aligned}$	$\begin{aligned} & 1.26\left(\mathrm{~d}, 7,3 \mathrm{H}, \mathrm{PM} e_{2}\right), 1.45\left(\mathrm{~d}, 8,3 \mathrm{H}, \mathrm{PM} e_{2}\right), 0.79, \\ & 0.41(\mathrm{br} \mathrm{~s}, \mathrm{PCH} \end{aligned}$
3c	-9.5 (br)	-13.2 (br)	na ${ }^{\text {c }}$	na ${ }^{\text {c }}$
at $-80^{\circ} \mathrm{C}^{\text {b }}$	-9.35 (dq, 60.5, 15)	-13.75 (br d, 23)	$\mathrm{na}^{\text {c }}$	na ${ }^{\text {c }}$
3d	-10.78 (b	br mult)	na ${ }^{\text {c }}$	na ${ }^{\text {c }}$
at $-80^{\circ} \mathrm{C}^{b}$	-8.72 (d q, 60, 20)	-13.22 (br d, 25)	na ${ }^{\text {c }}$	na ${ }^{\text {c }}$
5		-8.22, -8.70 (br)	$\begin{aligned} & 1.42(\mathrm{~d}, 8), 1.34(\mathrm{~d}, 8.5), \\ & 1.02(\mathrm{~d}, 5.5) \end{aligned}$	7.13 (mult, 2 H , ortho), 7.07 (tr. 8, 2H, meta), 6.96 (mult, para), 1.4 (ov mult, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.02 (mult, CHMe), 0.88 (d, $6.5,3 \mathrm{H}$ $\mathrm{CH} M e$), 0.49, 0.42 (s. $3 \mathrm{H}, \mathrm{CMe}_{2}$)
fac-7	-10.60 (d tr, 69, 28)	-13.30 (d, 56)	$\begin{gathered} 1.85(\mathrm{~d}, 8.5), 1.67(\mathrm{~d}, 5.5), \\ 1.50(\mathrm{~d}, 7.5) \end{gathered}$	4.62 (tr, 11, $=\mathrm{CH}$), 2.69 (br mult, $=\mathrm{CH}$), 2.45 (tr, 14, $=\mathrm{CH}$)
mer-7	-8.84 (tr d, 34, 19)	-12.04 (br d, 42)	$\begin{aligned} & 1.88 \text { (ov mult, } 18 \mathrm{H} \text {), } \\ & 1.73(\mathrm{~d}, 5) \end{aligned}$	$\begin{aligned} & 3.73(\mathrm{~d} \operatorname{tr}, 13,10,=\mathrm{C} H), 3.15(\mathrm{tr}, 8.5,=\mathrm{C} H), \\ & 3.09(\operatorname{trd}, 14,3,=\mathrm{C} H) \end{aligned}$

${ }^{\text {a }}$ Recorded at $25{ }^{\circ} \mathrm{C}$ in toluene- d_{8}; multiplicity, $J_{\mathrm{HP}}, J_{\mathrm{HH}}$ in parentheses. ${ }^{b}$ Recorded in THF- d_{8}. ${ }^{\text {a }}$ Not assigned.

Figure 1. Molecular structure of $\operatorname{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{\prime} \cdot \eta^{\prime}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{~B}-\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu-\mathrm{H})\right](3 \mathrm{~b})$.
of the Os analogue 3d are isomorphous with those of $\mathbf{3 b}$ and the molecular structure is very similar (Tables 2 and 3). The $\mathrm{Ru}-\mathrm{P} 1, \mathrm{P} 3$ distances (av 2.327(1) \AA) are typical for mutually trans ligands as found in cis- $\mathrm{RuHX}\left(\mathrm{PMe}_{3}\right)_{4}\left(\mathrm{Ru}-\mathrm{P}_{\mathrm{av}}=2.328-\right.$
(2) \AA for both $\mathrm{X}=\mathrm{O}-p$-tol and NHPh$),{ }^{23}$ as is $\mathrm{Ru}-\mathrm{P} 2$ trans to H (2.354(1) vs 2.364(2) \AA for cis-RuHX $\left.\left(\mathrm{PMe}_{3}\right)_{4}\right)$. The RuP4 distance ($2.258(1) \AA$) is significantly shorter, reflecting the weak trans influence of the substituted borohydride (cf. Ru-P $=2.259(3) \AA$ in $m e r-\mathrm{RuH}\left(\eta^{2}-\mathrm{H}_{2} \mathrm{BH}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{3} .{ }^{24}$
Complexes $3 \mathrm{a}-\mathrm{d}$ are fluxional as a result of exchange between $\mathrm{Ru}-\mathrm{H}$ and $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ as shown in the ${ }^{\prime} \mathrm{H}$ DNMR spectra of $\mathbf{3 b}$ (Table 4, Figure 2). The corresponding ${ }^{31}$ P NMR spectra are particularly informative as exchange is observed only for the PMe_{3} ligands trans to hydride and to the $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ bridge (Table 5, Figure 3). The activation energies $\Delta G^{\ddagger} T c$ for this exchange process were estimated from the DNMR spectra (Table 6) to be $14.7,10.5$, and $13.0 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$ for $3 \mathrm{a}-\mathrm{c}$, respectively.

Reaction of the benzyne complex $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ (4) with 1 equiv of thexylborane dimer yielded 1 equiv of

[^4] 1991, 10, 1875.
(24) Statler, J. A.; Wilkinson, G.; Thornton-Pett, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1984, 3, 1731.

Figure 2. ${ }^{1} \mathrm{H}$ DNMR spectra of $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{1}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{~B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)-\right.$ $(\mu-H)](3 b)$.
$\mathrm{Me}_{3} \mathrm{P} \cdot \mathrm{BH}_{2}$ (thexyl) and colorless crystals of $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHMeCMe}_{2} \mathrm{BPh}(\mu-\mathrm{H})_{2}\right]$ (5, eq 2), Similar reactions of 4 and $9-\mathrm{H}-\mathrm{BBN}$ gave a mixture of products which was not

characterized further. The molecular structure of 5, determined by X-ray diffraction (Figure 4), consists of a pseudooctahedral ruthenium center with facial PMe_{3} ligands and a unique $\mathrm{RuC}_{3} \mathrm{~B}$ -$(\mu-\mathrm{H})_{2}$ metallaheterocycle derived from $\mathrm{B}-\mathrm{C}$ bond formation and $\mathrm{C}-\mathrm{H}$ bond activation of the thexyl side chain. The $\mathrm{Ru}-\mathrm{P}$ bond distance trans to the alkyl ligand $(2.348(1) \AA)$ is considerably longer than those trans to the $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ (av 2.267(1) \AA), and $\mathrm{Ru}-\mathrm{C} 4(2.170(3) \AA$) is shorter than the analogous $\mathrm{Ru}-\mathrm{C}$

Table 5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra ${ }^{a}$

compd		Chemical Shift in ppm (multiplicity and ${ }^{2} J_{\mathrm{Pp}}$)
3a	at $100^{\circ} \mathrm{C}$	$\begin{aligned} & 2.0(\mathrm{v} \mathrm{br}, 2 \mathrm{P}),-3.9(\mathrm{~d} \mathrm{tr}, 234,27) \\ & -19.4(\mathrm{~d} \mathrm{tr}, 234,33) \end{aligned}$
	at $-80^{\circ} \mathrm{C}^{6}$	$\begin{aligned} & 20.4(\mathrm{~d} \mathrm{~d} \mathrm{~d}, 41,31,22),-1.5(\mathrm{~d} \mathrm{~d} \mathrm{~d}, 233 \\ & 31,25),-8.5(\mathrm{~d} \mathrm{~d} \mathrm{~d}, 25.5,25,22)^{\mathrm{c}} \\ & \quad-16.8(\mathrm{~d} \mathrm{~d} \mathrm{~d}, 233,41,25.5) \end{aligned}$
3b	at $95^{\circ} \mathrm{C}$	$\begin{aligned} & -0.3(\mathrm{~d} \mathrm{~d}, 32,28),-3.8(\mathrm{~d} \mathrm{tr}, 230,28), \\ & -22.9(\mathrm{~d} \mathrm{tr}, 230,32) \end{aligned}$
	at $-80^{\circ} \mathrm{C}^{\text {b }}$	16.1 (d d d, 38, 31, 21), -1.7 (d d d, 228, $31,26),-11.6(\mathrm{~d} \mathrm{~d} \mathrm{~d}, 26,25,21)^{c}$, -22.2 (d d d, 228, 38, 25)
3c	at $90^{\circ} \mathrm{C}$	$\begin{gathered} -45.8(\mathrm{~d} \mathrm{~d}, 23,16,2 \mathrm{P}),-47.4(\mathrm{~d} \mathrm{tr}, \\ 209,16)-65.5(\mathrm{~d} \mathrm{tr}, 209,23) \end{gathered}$
	at $-80^{\circ} \mathrm{C}$	$\begin{aligned} & -41.4(\mathrm{br}),-45.8(\mathrm{~d} \mathrm{tr}, 212,16) \\ & -46.3(\mathrm{br}),-63.6(\mathrm{~d} \mathrm{tr}, 212,25) \end{aligned}$
3d		$\begin{aligned} & -47.0(\mathrm{~d} \mathrm{tr}, 210,17),-47.7 \text { (ov mult) }) \\ & -71.6(\mathrm{~d} \mathrm{tr}, 210,27) \end{aligned}$
	at $-100^{\circ} \mathrm{C}^{\text {b }}$	$\begin{aligned} & -42.1 \text { (br mult), }-43.8(\mathrm{~d} \mathrm{tr}, 210,18), \\ & -46.5(\mathrm{br} \text { mult) },-69.6(\mathrm{~d} \mathrm{~d} \mathrm{~d}, 210, \\ & 26,18) \end{aligned}$
5^{b}		$\begin{aligned} & 19.0(\mathrm{~d} \mathrm{~d}, 45.5,17.5), 15.4(45.5,15), \\ & -14.4(\mathrm{~d}, 17.5,15) \end{aligned}$
$f a c-7$		$\begin{aligned} & 1.4(\mathrm{~d} \mathrm{~d}, 32,26),-1.8(\mathrm{~d} \mathrm{~d}, 26,20.5), \\ & -11.0(\mathrm{~d} \mathrm{~d}, 32,20.5)^{c} \end{aligned}$
mer-7		$\begin{aligned} & 8.3(\mathrm{~d} \mathrm{~d}, 35,34),-2.9(\mathrm{~d} \mathrm{~d}, 247,35), \\ & -6.2(\mathrm{~d} \mathrm{~d}, 247,34) \end{aligned}$

${ }^{\text {a }}$ Recorded at $25^{\circ} \mathrm{C}$ in toluene $-d_{8} .{ }^{b}$ Recorded in THF- d_{8}. ${ }^{\text {P }} \mathrm{P}$ trans to $\mathrm{Ru}-\mathrm{H}$.
Table 6. DNMR Data for $\mathrm{M}-\mathrm{H} / \mathrm{M}-\mathrm{H}-\mathrm{B}$ Exchange in 3a-c

compd		$T_{\mathrm{c}}, \mathrm{K}$	$\Delta \nu . \mathrm{Hz}$	$k_{\text {Tc }}, \mathrm{s}^{-1}$	$\Delta G^{\dagger}{ }_{\text {Tc }}, \mathrm{kcal} / \mathrm{mol}$
3a	(${ }^{31} \mathrm{P}$)	358	3497	7767	14.7
	(${ }^{1}$)	343	1080	2399	14.8
3b	(${ }^{3} \mathrm{P}$)	253	3352	7445	10.6
	(${ }^{1}$)	243	1128	2505	10.3
3c	(${ }^{3} \mathrm{P}$)	296	593	1317	13.1
	(${ }^{1}$)	303	1320	2932	12.9

trans-to-P bond distance (2.214(6) \AA) in cis- $\mathrm{RuH}\left(\mathrm{Ett}_{(}\left(\mathrm{PMe}_{3}\right)_{4},{ }^{18}\right.$ presumably a result of steric influence of the additional phosphine ligand in the latter. The $\mathrm{Ru}-\mathrm{B}$ distance (2.243(3) \AA) is similar to that found in mer $-\mathrm{RuH}\left(\eta^{2}-\mathrm{H}_{2} \mathrm{BH}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ (2.237(6) $\AA)^{24}$ and considerably shorter than the $\mathrm{Ru}-\mathrm{B}$ distances in the $\eta^{1}-\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ moieties in 3a (2.994(2) \AA) and fac-7 (2.520(3) \AA, vide infra).

Treatment of ethylene complex $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(6)$ with 1 equiv of $9-\mathrm{H}-\mathrm{BBN}$ dimer at $-80^{\circ} \mathrm{C}$ gives 1 equiv of $\mathrm{Me}_{3} \mathrm{P} \cdot \mathrm{BH}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)$ and colorless crystals of $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{2}, \eta^{1}-\right.$ $\left.\mathrm{CH}_{2}=\mathrm{CHB}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu-\mathrm{H})\right](7)$ which exists as a $2: 1$ mixture of fac-7 and mer-7 isomers in solution. Monitoring this reaction by multinuclear NMR spectroscopy indicated the additional formation of 9 -vinyl- BBN^{25} and cis- $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ (ca. 20\%). Conducting the addition at $25^{\circ} \mathrm{C}$ gave more of the latter products along with other unidentified ruthenium-containing products. The 9 -vinyl-BBN is clearly formed by a competing reaction pathway as 7 shows no tendency to lose 9 -vinyl-BBN upon heating at $100^{\circ} \mathrm{C}$. Reactions of 6 with thexylborane gave a complex mixture of products which was not characterized further.

[^5]

Figure 3. ${ }^{31}$ P DNMR spectra of $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{\prime}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{~B}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)\right.$ -$(\mu-\mathrm{H})](\mathbf{3 b})$.

Figure 4. Molecular structure of $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{2}-\mathrm{CH}_{2} \mathrm{CHMeCMe}_{2}-\right.$ $\left.\mathrm{BPh}(\mu-\mathrm{H})_{2}\right]$ (5). Hydrogen atoms are omitted for clarity.

No apparent broadening was observed in the ${ }^{1} \mathrm{H}$ or ${ }^{31} \mathrm{P}$ NMR spectra of 7 at $100^{\circ} \mathrm{C}$, indicating that both $\mathrm{Ru}-\mathrm{H} / \mathrm{Ru}-\mathrm{H}-\mathrm{B}$ exchange and fac/mer exchange are slow on the NMR time scale. The stereochemistry of mer-7 was inferred from the singlet ${ }^{13} \mathrm{C}$ NMR resonance of the CH_{2} of the vinylborane ligand; the corresponding resonance is a doublet $\left({ }^{2} J_{\mathrm{CP}}=12\right.$ Hz) for $f a c-7$ in which one of the PMe_{3} ligands is trans to the coordinated vinyl group.

The molecular structure of fac-7 (Figure 5), determined by X-ray diffraction, consists of a pseudooctahedral ruthenium center with facial PMe_{3} ligands, an η^{2}-vinylborane ligand, and cis $\mathrm{Ru}-\mathrm{H}$ and $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ moieties. The $\mathrm{Ru}-\mathrm{P}$ bond distances (Table 8) are again a reflection of the trans ligand ($\mathrm{Ru}-\mathrm{Pl}=$ $2.371(1) \AA$ trans to H and $\mathrm{Ru}-\mathrm{P} 3=2.287(1) \AA$ trans to $\mathrm{Ru}-$ $\mathrm{H}-\mathrm{B}$), and the $\mathrm{Ru}-\mathrm{C}$ distances (av 2.256(3) \AA) are significantly

Table 7. Selected Bond Distances (\AA) and Angles (deg) for $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{1}, \eta^{2}-\mathrm{CH}_{2} \mathrm{CHMeCMe}{ }_{2} \mathrm{BPh}(\mu-\mathrm{H})_{2}\right](5)$

$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.262(1)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(3)$	$94.72(4)$
$\mathrm{Ru}(1)-\mathrm{P}(3)$	$2.2721(8)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(4)$	$95.41(3)$
$\mathrm{Ru}(1)-\mathrm{P}(4)$	$2.3477(8)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{P}(4)$	$96.93(3)$
$\mathrm{Ru}(1)-\mathrm{C}(4)$	$2.170(3)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{C}(4)$	$93.30(8)$
$\mathrm{Ru}(1)-\mathrm{B}(1)$	$2.243(3)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{C}(4)$	$84.61(8)$
$\mathrm{Ru}(1)-\mathrm{H}(1)$	$1.763(30)$	$\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{C}(4)$	$170.99(8)$
$\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$1.768(23)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{B}(1)$	$129.11(8)$
$\mathrm{P}(2)-\mathrm{C}(21)$	$1.824(3)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{B}(1)$	$132.78(8)$
$\mathrm{P}(2)-\mathrm{C}(22)$	$1.832(3)$	$\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{B}(1)$	$95.46(8)$
$\mathrm{P}(2)-\mathrm{C}(23)$	$1.824(3)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}(1)$	$162(1)$
$\mathrm{P}(3)-\mathrm{C}(31)$	$1.826(3)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$95.3(7)$
$\mathrm{P}(3)-\mathrm{C}(32)$	$1.829(3)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}(1)$	$103(1)$
$\mathrm{P}(3)-\mathrm{C}(33)$	$1.828(3)$	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$165.4(8)$
$\mathrm{P}(4)-\mathrm{C}(41)$	$1.832(3)$	$\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{H}(1)$	$84(1)$
$\mathrm{P}(4)-\mathrm{C}(42)$	$1.825(3)$	$\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$92.8(7)$
$\mathrm{P}(4)-\mathrm{C}(43)$	$1.831(3)$	$\mathrm{C}(4)-\mathrm{Ru}(1)-\mathrm{B}(1)$	$77.2(1)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.535(4)$	$\mathrm{C}(4)-\mathrm{Ru}(1)-\mathrm{H}(1)$	$87(1)$
$\mathrm{C}(2)-\mathrm{C}(5)$	$1.485(4)$	$\mathrm{C}(4)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$84.1(7)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.549(5)$	$\mathrm{B}(1)-\mathrm{Ru}(1)-\mathrm{H}(1)$	$34(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.490(4)$	$\mathrm{B}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$34.7(7)$
$\mathrm{C}(3)-\mathrm{C}(7)$	$1.559(5)$	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	$67(1)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.390(4)$	$\mathrm{Ru}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.5(2)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.386(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	$117.3(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.398(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$106.1(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.359(6)$	$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{C}(6)$	$106.2(3)$
$\mathrm{C}(14)-\mathrm{C}(5)$	$1.359(7)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.0(3)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.392(5)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	$113.1(3)$
$\mathrm{C}(2)-\mathrm{B}(1)$	$1.619(4)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	$110.2(3)$
$\mathrm{C}(11)-\mathrm{B}(1)$	$1.595(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{B}(1)$	$106.7(2)$
$\mathrm{B}(1)-\mathrm{H}(1)$	$1.253(30)$	$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{B}(1)$	$109.6(2)$
$\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	$1.278(23)$	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{B}(1)$	$110.9(2)$
		$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{B}(1)$	$120.8(2)$
		$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{B}(1)$	$122.8(3)$
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{C}(2)$	$114.2(2)$
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{C}(11)$	$129.9(2)$
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{H}(1)$	$52(1)$
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	$52(1)$
	$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{C}(1)$	$115.9(2)$	
		$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{H}(1)$	$115(1)$
		$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	$111(1)$
		$\mathrm{C}(11)-\mathrm{B}(1)-\mathrm{H}(1)$	$105(1)$
		$\mathrm{C}(11)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	$108(1)$
		$\mathrm{H}(1)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	$101(2)$
		$\mathrm{Ru}(1)-\mathrm{H}(1)-\mathrm{B}(1)$	$95(2)$
			$\mathrm{H}\left(1^{\prime}\right)-\mathrm{B}(1)$
	$93(1)$		

longer than those found previously for ethylene complex 6 (av $2.167(7) \AA) .{ }^{18}$

Discussion

While dihydrides $c i s-\mathrm{MH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}(\mathbf{1}, \mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ failed to react with both thexylborane and $9-\mathrm{H}-\mathrm{BBN}$, addition of these hydroborating reagents to analogous d^{6} monohydride complexes $\mathrm{MH}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)(\mathbf{2 a}, \mathbf{b})$ was facile, giving the corresponding metallaheterocycles $\mathrm{MH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{\prime}, \eta^{1}-\mathrm{PMe}_{2} \mathrm{CH}_{2} \mathrm{BRR}^{\prime}\right.$ -$(\mu-\mathrm{H})]$ ($\mathbf{3 a}-\mathbf{d}$). In analogous reactions with rhodium- and iridium phosphine complexes, initial phosphine loss as the phosphine-borane adduct provides a vacant coordination site at the metal center for further reactions with organoboranes, ${ }^{5}$ The absence of phosphine-borane adduct formation in this reaction, along with the observed stability of 1 , suggests that addition of organoboranes to 2 proceeds via initial electrophilic attack by boron on the CH_{2} group of the $\mathrm{Me}_{2} \mathrm{PCH}_{2}$ moiety. Insertion of $\mathrm{B}-\mathrm{H}$ into the $\mathrm{M}-\mathrm{C}$ bond then gives the metallaheterocycles. This mechanism is in agreement with earlier reports that describe the formation of metal hydrides and

Table 8. Selected Bond Distances (\AA) and Angles (deg) for $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{2}, \eta^{1}-\mathrm{CH}_{2}=\mathrm{CHB}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu-\mathrm{H})\right](7)$

$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.3714 (8)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	96.08 (3)
$\mathrm{Ru}(1)-\mathrm{P}(2)$	2.2901 (8)	$P(1)-\mathrm{Ru}(1)-\mathrm{P}(3)$	98.37 (3)
$\mathrm{Ru}(1)-\mathrm{P}(3)$	2.2869 (7)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(3)$	96.49 (3)
$\mathrm{Ru}(1)-\mathrm{C}(9)$	2.208 (2)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(9)$	112.84 (7)
$\mathrm{Ru}(1)-\mathrm{C}(10)$	2.303 (3)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(10)$	82.08 (8)
$\mathrm{Ru}(1)-\mathrm{B}(1)$	2.520 (3)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{C}(9)$	139.74 (7)
$\mathrm{Ru}(1)-\mathrm{H}(1)$	1.553 (29)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{C}(10)$	169.8 (1)
$\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	1.747 (28)	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{C}(9)$	105.80 (7)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.831 (3)	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{C}(10)$	93.68 (8)
$\mathrm{P}(1)-\mathrm{C}(12)$	1.823 (3)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{B}(1)$	107.97 (7)
$\mathrm{P}(1)-\mathrm{C}(13)$	1.824 (3)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{B}(1)$	107.60 (7)
$\mathrm{P}(2)-\mathrm{C}(21)$	1.824 (3)	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{B}(1)$	141.63 (7)
$\mathrm{P}(2)-\mathrm{C}(22)$	1.824 (3)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{H}(1)$	176 (1)
$\mathrm{P}(2)-\mathrm{C}(23)$	1.826 (3)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	92 (1)
$\mathrm{P}(3)-\mathrm{C}(31)$	1.824 (4)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}(1)$	80 (1)
$\mathrm{P}(3)-\mathrm{C}(32)$	1.821 (4)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	82 (1)
$\mathrm{P}(3)-\mathrm{C}(33)$	1.824 (4)	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}(1)$	81 (1)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.533 (4)	$\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	169.7 (9)
C(1)-C(8)	1.537 (4)	$\mathrm{C}(9)-\mathrm{Ru}(1)-\mathrm{C}(10)$	35.7 (1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.526 (4)	$\mathrm{C}(9)-\mathrm{Ru}(1)-\mathrm{B}(1)$	38.26 (9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.540 (5)	$\mathrm{C}(10)-\mathrm{Ru}(1)-\mathrm{B}(1)$	63.9 (1)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.535 (4)	$\mathrm{C}(9)-\mathrm{Ru}(1)-\mathrm{H}(1)$	71 (1)
C(5)-C(6)	1.543 (4)	$\mathrm{C}(9)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	69.7 (9)
C(6)-C(7)	1.534 (4)	$\mathrm{C}(10)-\mathrm{Ru}(1)-\mathrm{H}(1)$	102 (1)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.533 (4)	$\mathrm{C}(10)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	88 (1)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.387 (4)	$\mathrm{B}(1)-\mathrm{Ru}(1)-\mathrm{H}(1)$	75 (1)
$\mathrm{C}(1)-\mathrm{B}(1)$	1.617 (4)	$\mathrm{B}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)$	31.9 (9)
$C(5)-B(1)$	1.615 (4)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(\mathrm{l}^{\prime}\right)$	89 (1)
$\mathrm{C}(9)-\mathrm{B}(1)$	1.577 (4)	$\mathrm{Ru}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	75.9 (2)
$\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	1.389 (27)	$\mathrm{Ru}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	68.4 (1)
		$\mathrm{Ru}(1)-\mathrm{C}(9)-\mathrm{B}(1)$	81.6 (1)
		$\mathrm{Ru}(1)-\mathrm{C}(9)-\mathrm{H}(9)$	109 (2)
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{C}(1)$	120.3 (2)
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{C}(5)$	126.6 (2)
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{C}(9)$	60.1 (1)
		$\mathrm{Ru}(1)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	42 (1)
		$C(1)-B(1)-C(5)$	106.4 (2)
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(9)$	118.6 (2)
		$\mathrm{C}(5)-\mathrm{B}(1)-\mathrm{C}(9)$	118.5 (2)
		$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	109 (1)
		$\mathrm{C}(5)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	101 (1)
		$\mathrm{C}(9)-\mathrm{B}(1)-\mathrm{H}\left(1^{\prime}\right)$	101 (1)
		$\mathrm{Ru}(1)-\mathrm{H}\left(1^{\prime}\right)-\mathrm{B}(1)$	106 (2)

Scheme 1

alkylboranes by addition of hydroborating reagents to saturated metal alkyl complexes. ${ }^{\text {3d.4c.d }}$ Likewise, certain metal-catalyzed hydroborations are believed to proceed via analogous σ-bond metathesis pathways. ${ }^{2 \mathrm{e}, \mathrm{j} .4 \mathrm{~d}}$ For $\mathbf{3 a - d}$, the newly formed organoboranes are trapped at the metal center by coordination of the P atom. Boron then coordinates to the metal via a three centered $\mathrm{M}-\mathrm{H}-\mathrm{B}$ interaction.
The facile fluxional process which equilibrates the $\mathrm{M}-\mathrm{H}$ and $\mathrm{M}-\mathrm{H}-\mathrm{B}$ hydrogens and their associated trans PMe_{3} ligands in $\mathbf{3 a - d}$ can be attributed to the nature of the $\mathrm{M}-\mathrm{H}-\mathrm{B}$ bond, which can be considered not only as a $\mathrm{B}-\mathrm{H}$ bond donating

Figure 5. Molecular structure of $\mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}\left[\eta^{2}, \eta^{1}-\mathrm{CH}_{2}=\mathrm{CHB}-\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mu-\mathrm{H})\right]$ (7): (A) hydrogen atoms are omitted for clarity and (B) viewed along the $\mathrm{B}-\mathrm{C}=\mathrm{C}$ plane.
electron density to an unsaturated metal fragment ${ }^{26}$ but also as an empty orbital on B interacting with the $\mathrm{M}-\mathrm{H}$ bond. In this latter view of the $\mathrm{M}-\mathrm{H}-\mathrm{B}$ bond, the fluxional process observed for $\mathbf{3 a}-\mathbf{d}$ simply involves swapping the empty B orbital between the two ruthenium hydrides. Some chemical support for this view is provided by the Lewis base-mediated conversion of metal-coordinated borohydride ligands to base-borane adducts and metal hydrides. ${ }^{27}$ The lower activation energy for exchange

of $\mathrm{Ru}-\mathrm{H}$ and $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ moieties observed for $\mathbf{3 b}$ (vs 3a) presumably reflects the weaker $\mathrm{B}-\mathrm{H}$ interaction in the former which is more sterically hindered at boron. The origin of the smaller kinetic barrier for $\mathrm{M}=\mathrm{Os}$ (vs Ru) is more difficult to rationalize, as the $\mathrm{Os}-\mathrm{H}$ bond should be more nucleophilic than $\mathrm{Ru}-\mathrm{H}$ and thus form a stronger $\mathrm{M}-\mathrm{H}-\mathrm{B}$ interaction. Perhaps the more basic Os center affords preferential charge stabilization of a transition state such as that shown below.

For complex $\mathbf{3 b}$, a windshield wiper-type motion of the empty boron p -orbital between the two $\mathrm{Ru}-\mathrm{H}$ ligands would be sufficient to average the diastereotopic $\mathrm{P}-\mathrm{CH}_{2}$ (and PMe_{2})

[^6]resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum. For 3a, however, this process would not invert the asymmetric boron center. The observed equilibration of these resonances for 3a suggests that a sequence involving dissociation of the $\mathrm{B}-\mathrm{H}$ bond, rotation about the $\mathrm{B}-\mathrm{C}$ bond, and formation of the new $\mathrm{B}-\mathrm{H}$ bond may be occurring. If this mechanism was operative, we might expect 3a to react with Lewis bases at boron, but no reaction was observed between 3a and PMe_{3}. An alternative associative exchange mechanism involves rotation of the empty p-orbital so that overlap with both $\mathrm{Ru}-\mathrm{H}$ ligands is maintained in the transition state. The "rollover" process allows rotation about the $\mathrm{B}-\mathrm{C}$ bond and inversion of the asymmetric boron center.

Reactions of benzyne complex 4 with protic $\mathrm{E}-\mathrm{H}$ bonds usually give $\mathrm{RuE}(\mathrm{Ph})\left(\mathrm{PMe}_{3}\right)_{4}$ and/or benzene and organoruthenium products resulting from $\mathrm{C}-\mathrm{H}$ bond activation. ${ }^{19}$ The reaction of 4 with thexylborane is presumably initiated by formation of phosphine-borane and unsaturated intermediate $\left[\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ (I, Scheme 1). Insertion of the borane $\mathrm{B}-\mathrm{H}$ bond into the $\mathrm{Ru}-\mathrm{C}$ bond of the coordinated benzyne in I would give ruthenacycle II. Cleavage of the $\mathrm{B}-\mathrm{H}$ bond, followed by $\mathrm{C}-\mathrm{H}$ bond reductive elimination then affords ruthenium borane intermediate III. Oxidative addition of the $\mathrm{C}_{\gamma}-\mathrm{H}$ bond of the thexyl group and reformation of the second $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ bridge then gives 5. A similar reaction of $\mathrm{Cp}_{2} \mathrm{Ti}$ -$\left(\eta^{2}-\mathrm{PhC} \equiv \mathrm{CPh}\right)\left(\mathrm{PMe}_{3}\right)$ with diethylborane gives phosphineborane and the (boryl)vinyl complex $\mathrm{Cp}_{2} \mathrm{Ti}\left[\eta^{1}, \eta^{1}-\mathrm{CPh}=\mathrm{CPhBEt}_{2}{ }^{-}\right.$ $(\mu-\mathrm{H})] .{ }^{28}$

Formation of phosphine-borane in reactions of $\mathbf{4}$ and $\mathbf{6}$ with organoboranes reflects the increased electron density at the metal center in these complexes (vs $\mathrm{d}^{6} \mathbf{1}$ and $\mathbf{2}$) and is also observed in reactions of analogous $\mathrm{d}^{8} \mathrm{Rh}$ and Ir phosphine complexes. ${ }^{5.6 \mathrm{~b}}$ Further verification of this trend is provided by reaction of d^{10} $\mathrm{Pd}\left(\mathrm{PMe}_{3}\right)_{4}$ with organoboranes which gives only phosphineborane and palladium metal. ${ }^{29}$

Reactions of organoruthenium complexes 2, 4, and 6 with hydridic $\mathrm{B}-\mathrm{H}$ bonds bear little resemblance to those observed with protic $\mathrm{E}-\mathrm{H}$ bonds, where $\mathrm{E}=\mathrm{NRR}^{\prime},{ }^{23} \mathrm{OR},{ }^{23,30} \mathrm{SR} .{ }^{30}$ While the latter afford addition products of the type $\mathrm{RuH}(\mathrm{E})-$ $\left(\mathrm{PMe}_{3}\right)_{4}$, borane reagents all form new $\mathrm{B}-\mathrm{C}$ bonds, with the $\mathrm{Ru}-\mathrm{H}$ moieties in 5 and $\mathbf{7}$ arising from $\mathrm{C}-\mathrm{H}$ bond activation. This mode of reactivity is particularly relevant in the formation of vinylborane complex 7 from ethylene complex 6 as previous examples of catalyzed alkene borylation were proposed to involve initial insertion of the alkene into the $\mathrm{M}-\mathrm{B}$ bond. ${ }^{2 \mathrm{k} .7 .8 .31}$

The reaction of 6 with $9-\mathrm{H}-\mathrm{BBN}$ provides an alternative mechanism for the borylation of alkenes. In this borylation model reaction, 1 equiv of the borane removes a PMe_{3} ligand to give phosphine-borane and the unsaturated intermediate [Ru -$\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$] (IV, Scheme 2). While we cannot rule out conversion of this intermediate to the (η^{2}-vinyl)ruthenium

[^7]
Scheme 2

hydride (\mathbf{V}), ${ }^{32}$ followed by insertion of the borane $\mathrm{B}-\mathrm{H}$ into the $\mathrm{Ru}-\mathrm{C}$ bond, an alternative scheme involves initial insertion of the borane $\mathrm{B}-\mathrm{H}$ into the $\mathrm{Ru}-\mathrm{C}$ bond of the coordinated ethylene in IV to give ruthenacycle VI which then undergoes β-H abstraction to give 7. Note that VI is analogous to Binger and Erker's cyclic titanocene derivative discussed above. ${ }^{28}$ The ability of boryl substituents to activate adjacent $\mathrm{C}-\mathrm{H}$ bonds for β - H abstraction has been observed previously for both Rh^{6} and Ir^{5} complexes. Smith et al. have recently reported a similar borylation reaction of 16 electron $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and HBcat to give H_{2} and the titanium vinylboronate ester complex, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Bcat}\right){ }^{3 \mathrm{f}}$

A third pathway for the formation of 7 invokes initial formation of IV followed by oxidative addition of the $\mathrm{B}-\mathrm{H}$ bond to give a $\mathrm{Ru}(\mathrm{II})$-boryl intermediate (boryl $=\mathrm{BR}_{2}$). ${ }^{33}$ Insertion of ethylene into the $\mathrm{Ru}-\mathrm{B}$ bond with subsequent $\beta-\mathrm{H}$ abstraction would also afford (η^{2}-vinylborane)ruthenium hydride 7. Indeed, vinylboronate esters are major products resulting from $\mathrm{C}-\mathrm{C}$ bond insertion into $\mathrm{Rh}-\mathrm{B}$ followed by β - H elimination in stoichiometric reactions of vinylarenes with $\mathrm{RhCl}(\mathrm{Bcat})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{2}{ }^{8}$ We consider this option less likely, however, as $\mathrm{B}-\mathrm{H}$ bond activation of alkyl- and dialkylboranes (as opposed to HB$(\mathrm{OR})_{2}$) has only been observed previously for supernucleophiles such as $\operatorname{Ir} H\left(\mathrm{PMe}_{3}\right)_{4}{ }^{5}$ In addition, increased electrophilicity of boron in 9-H-BBN (vs $\mathrm{HB}(\mathrm{OR})_{2}$) should also favor direct $\mathrm{B}-\mathrm{C}$ bond formation by electrophilic attack at carbon in the coordinated ethylene. Prior coordination of $\mathrm{B}-\mathrm{H}$ to Ru in IV would further enhance the electrophilicity of the vacant p-orbital on boron.

In the addition of $9-\mathrm{H}-\mathrm{BBN}$ to 6 we observed a competing pathway which gave cis- $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4} 1$ and $9-$ vinyl-BBN without formation of phosphine-borane. This reaction presumably proceeds via direct electrophilic attack of the organoborane on one of the coordinated CH_{2} moieties (cf. analogous reactions

[^8]Scheme 3

with 2) to give saturated borylalkyl intermediate VII (Scheme 3). A similar mechanism has been invoked to explain the reaction of $(\mathrm{RCp})_{2} \mathrm{M}\left(\eta^{4}\right.$-butadiene) with $9-\mathrm{H}-\mathrm{BBN}$ to give the corresponding (1-boryl)allyl complex ($\mathrm{R}=\mathrm{H}, \mathrm{Me} ; \mathrm{M}=\mathrm{Zr}$, $\mathrm{Hf}) .{ }^{34}$ In our case, intermediate VII undergoes cleavage of the $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ to give unsaturated zwitterion VIII, which then undergoes β - H abstraction and hydride transfer from B to Ru to give 1 and 9 -vinyl-BBN,

Conclusions

As found previously for organorhodium complexes, ${ }^{6}$ reactions of organoruthenium complexes with alkylboranes proceed with formation of $\mathrm{B}-\mathrm{C}$ bonds. The Lewis acidity of the resulting three-coordinate boron gives rise to $\mathrm{Ru}-\mathrm{H}-\mathrm{B}$ interactions and facile $\mathrm{Ru}-\mathrm{H} / \mathrm{Ru}-\mathrm{H}-\mathrm{B}$ exchange in complexes $3 \mathrm{a}-\mathrm{d}$. The electron-rich ethylene and benzyne complexes lose PMe_{3} as the phosphine-borane react with a second equiv of borane via $B-C$ bond formation and finally form ruthenium hydrides by $\mathrm{C}-\mathrm{H}$ bond activation. The borylation of Ru-coordinated ethylene via insertion of the $\mathrm{B}-\mathrm{H}$ bond into the $\mathrm{Ru}-\mathrm{C}$ bond suggests an alternate mechanism for catalyzed borylation ${ }^{2 \mathrm{k} .7}$ which has been modeled previously by insertion of an alkene into an $M-B$ bond. ${ }^{8}$ The actual pathway taken will depend on the Lewis acidity of the borane and the basicity of the metal center.

Acknowledgment. We thank Tim Onley, Nancy Herling, Lou Lardear, Will Marshall, Laurie Howe, and Dr. Derick Ovenall for expert technical assistance, and T.B.M. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding.
Supporting Information Available: Tables of final positional and thermal parameters for non-hydrogen atoms, general temperature factors, and calculated hydrogen atom positions (28 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA951109N
(34) Erker, G.; Noe, R.; Wingbermühle, D.; Petersen, J. L. Angew. Chem., Int. Ed. Engl. 1993, 32, 1213.
(35) A report on reactions of organoplatinum complexes with B_{2} cat ${ }_{2}$ has recently appeared: Iverson, C. N.: Smith, M. R. III J. Am. Chem. Soc. 1995, 117, 4403.

[^0]: ${ }^{+}$DuPont Science and Engineering Labs.
 ₹ University of Waterloo.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, August 1, 1995.
 (1) Männig, D.: Nöth, H. Angew. Chem. Int. Ed. Engl. 1985, 24, 878.
 (2) For leading references see: (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. (b) Kocienski, P.; Jarowicki, K.; Marczak, S. Synthesis 1991, 1191. (c) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. 1992, 114, 8863. (d) Brands, K. M. J.; Kende, A. S. Tetrahedron Lett. 1992, 33, 5887. (e) Harrison, K. N.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 9220. (f) Gridnev, I. D.; Miyaura, N.; Suzuki, A. Organometallics 1993, 12, 589. (g) Matsumoto, Y.; Naito, M.; Uozumi, Y.; Hayashi, T. J. Chem. Soc., Chem. Commun. 1993, 1468. (h) Hou, X.L.; Hong, D.-G.; Rong. G.-B.; Guo, Y.-L.; Dai, L.-X. Tetrahedron Lett. 1993, 34. 8513. (i) Doyle, M. P.; Westrum, L. J.: Protopova, M. N.; Eismont, M. Y.; Jarstfer, M. B. Mendeleev Comm. 1993, 81. (j) Evans, D. A.: Muc̣i, A. R.; Stürmer, R.; Fu, G. C. J. Org. Chem. 1993, 58, 5307. (k) Brown, J. M.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 1994, 116, 866. (1) Matthews, J. L.; Steel, P. G. Tetrahedron Lett. 1994, 35, 1421.
 (3) (a) Gilbert, K. B.; Boocock, S. K.; Shore, S. G. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 6: pp 897-914. (b) Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329. (c) Hartwig. J. F.: Huber, S. J. Am. Chem. Soc. 1993, 115 , 4908. (d) Hartwig, J. F.; Bhandari, S.; Rablen, P. R. J. Am. Chem. Soc. 1994, 116, 1839. (e) Hartwig, J. F.; De Gala, S. R. J. Am. Chem. Soc. 1994. 116, 3661. (f) Lantero, D. R.: Motry. D. H.: Smith, M. R. 207 th National ACS Meeting, San Diego, March, 1994, Abst. INOR 38; Motry, D. H.; Smith, M. R. J. Am. Chem. Soc. 1995, 117, 6615.
 (4) (a) Kono, H.; Ito, K.: Nagai, Y. Chem. Lett. 1975, 1095. (b) Knorr, J. R.; Merola, J. S. Organometallics 1990, 9, 3008. (c) Westcott, S. A.; Taylor, N. J.; Marder, T. B.; Baker, R. T.; Jones, N. L.; Calabrese, J. C. J. Chem. Soc., Chem. Commun. 1991, 304. (d) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. Inorg. Chem. 1993, 32, 2175. (e) Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. Can. J. Chem. 1993, 71, 930.

[^1]: (5) Baker, R. T.; Ovenall, D. W.; Calabrese, J. C.; Westcott, S. A.; Taylor, N. J.; Williams, I. D.; Marder, T. B. J. Am. Chem. Soc. 1990, 112, 9399.
 (6) (a) Baker, R. T.; Ovenall, D. W.; Harlow, R. L.: Westcott, S. A.; Taylor, N. J.; Marder, T. B. Organometallics 1990, 9, 3028. (b) Westcott, S. A.; Taylor, N. J.; Marder, T. B.; Baker, R. T.; Calabrese, J. C.; Harlow. R. L., submitted for publication.
 (7) Westcott, S. A.; Marder, T. B.; Baker, R. T. Organometallics 1993, 12, 975 .
 (8) Baker, R. T.; Calabrese, J. C.; Westcott, S. A.; Nguyen, P.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 4367.
 (9) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018.
 (10) Nguyen, P.; Lesley, G.: Taylor, N. J.; Marder. T. B.: Pickett, N.: Clegg, W.: Elsegood, M. R. J.; Norman, N. C. Inorg. Chem. 1994, 33, 4623.

[^2]: (11) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1336.
 (12) Presented in part at the 200th National ACS meeting, Washington, August, 1990, Abst. INOR 429.
 (13) Pelter, A.: Smith, K.; Brown, H. C. Borane Reagents; Academic Press: New York, 1988.
 (14) Sellmann, D.; Bohlen, E. Z. Naturforsch., Anorg. Chem., Org. Chem. 1982. 37, 1026.
 (15) Jones, R. A.; Wilkinson, G.; Colquohoun, I. J.; McFarlane, W.; Galas, A. M. R.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1980, 2480.
 (16) Werner, H.; Werner, R. J. Organomet. Chem. 1981, 209, C60.
 (17) Werner, H.; Gotzig, J. Organometallics 1983, 2, 547.
 (18) Wong, W.-K.; Chiu, K. W.; Statler, J. A.; Wilkinson, G.; Motavelli, M.; Hursthouse. M. B. Polyhedron 1984, 3, 1255.
 (19) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc. 1991, 113, 3404.

[^3]: (20) Sheldrick, G. M. SHELX, University of Gottingen, Federal Republic of Germany, 1986.
 (21) Cromer, D. T.; Ibers, J. A. International Tables for X-ray Crystallography: Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.31. (22) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham. England, 1974; Vol. IV, Table 2.2A.

[^4]: (23) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. Organometallics

[^5]: (25) Singleton, D. A.; Martinez, J. P. J. Am. Chem. Soc. 1990, 112, 7423.

[^6]: (26) (a) Baker, R. T.; King, R. E.; Knobler, C.: O’Con, C. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1978, 100, 8266. (b) Behnken, P. E.; Marder, T. B.; Baker, R. T.; Knobler, C.; Thompson, M. R.; Hawthorne, M. F. J. Am. Chem. Soc. 1985, 107, 932.

[^7]: (27) James, B. D.; Nanda, R. K.; Wallbridge, M. G. H. Inorg. Chem. 1967, 6, 1979.
 (28) Binger, P.: Sandmeyer, F.; Krüger, C.; Kuhnigk, J.; Goddard, R.; Erker, G. Angew. Chem. Intl. Ed. Eng. 1994, 33, 197.
 (29) Baker, R. T., unpublished results.
 (30) Burn, M. J., Ph.D. Dissertation, University of California, 1993. Burn, M. J.; Fickes, M. G.; Hollander, F. J.; Bergman, R. G. Organometallics 1995, 14, 137.
 (31) Burgess, K.; van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem. Soc. 1992, 114, 9350.

[^8]: (32) For leading references on (η^{2}-vinyl)metal hydride complexes, see: Whittlesey, M. K.; Mawby, R. J.; Osman, R.; Perutz, R. N.; Field, L. D.; Wilkinson, M. P.; George, M. W. J. Am. Chem. Soc. 1993, 115, 8627. Gutiérrez, E.; Monge, A.; Nicasio, M. C.; Poveda, M. L.; Carmona, E. J. Am. Chem. Soc. 1994, 116, 791.
 (33) Ruthenium boryl complexes of the type $\mathrm{Ru}\left(\mathrm{BX}_{2}\right)$, where $\mathrm{X}=$ heteroatom-containing substituent, have been prepared recently. Roper, W. R., unpublished results.

